Home
Tampilkan postingan dengan label Dwarf Planets. Tampilkan semua postingan
Tampilkan postingan dengan label Dwarf Planets. Tampilkan semua postingan

225088 Gonggong

Gonggong (formally 225088 Gonggong; provisional designation 2007 OR10) is a dwarf planet, a member of the scattered disc beyond Neptune. It has a highly eccentric and inclined orbit during which it ranges from 34–101 astronomical units (5.1–15.1 billion kilometers; 3.2–9.4 billion miles) from the Sun. As of 2019, its distance from the Sun is 88 AU (13.2×109 km; 8.2×109 mi), and it is the sixth-farthest known Solar System object. Gonggong is in a 3:10 orbital resonance with Neptune, in which it completes three orbits around the Sun for every ten orbits completed by Neptune. Gonggong was discovered in July 2007 by American astronomers Megan Schwamb, Michael Brown, and David Rabinowitz at the Palomar Observatory, and the discovery was announced in January 2009.

At approximately 1,230 km (760 mi) in diameter, Gonggong is the size of Pluto's moon Charon, and is the fifth-largest known trans-Neptunian object. It may be sufficiently massive to be plastic under its own gravity and therefore a dwarf planet. Gonggong's large mass makes retention of a tenuous atmosphere of methane just possible, though such an atmosphere would slowly escape into space. The object is named after Gònggōng, a Chinese water god responsible for chaos, floods and the tilt of the Earth. The name was chosen by its discoverers in 2019, when they hosted an online poll for the general public to help choose a name for the object, and the name Gonggong won.

Gonggong is red, likely due to the presence of organic compounds called tholins on its surface. Water ice is also present on its surface, which hints at a brief period of cryovolcanic activity in the distant past. With a rotation period around 22 hours, Gonggong rotates slowly compared to other trans-Neptunian objects, which typically have periods less than 12 hours. The slow rotation of Gonggong may have been caused by tidal forces from its natural satellite, named Xiangliu.

50000 Quaoar

Quaoar (50000 Quaoar), provisional designation 2002 LM60, is a dwarf planet in the Kuiper belt, a region of icy planetesimals beyond Neptune. A non-resonant object (cubewano), it measures approximately 1,121 km (697 mi) in diameter, about half the diameter of Pluto. The object was discovered by American astronomers Chad Trujillo and Michael Brown at the Palomar Observatory on 4 June 2002. Signs of water ice on the surface of Quaoar have been found, which suggests that cryovolcanism may be occurring on Quaoar. A small amount of methane is present on its surface, which can only be retained by the largest Kuiper belt objects. In February 2007, Weywot, a synchronous moon in orbit around Quaoar, was discovered by Brown. Weywot is measured to be 170 km (110 mi) across. Both objects were named after mythological figures from the Native American Tongva people in Southern California. Quaoar is the Tongva creator deity and Weywot is his son.

90377 Sedna

Sedna (minor-planet designation 90377 Sedna) is a dwarf planet in the outer reaches of the Solar System that is currently in the innermost part of its orbit; as of 2021 it is 84 astronomical units (1.26×1010 km; 0.00041 pc) from the Sun, almost three times farther than Neptune. Spectroscopy has revealed that Sedna's surface composition is similar to those of some other trans-Neptunian objects, being largely a mixture of water, methane, and nitrogen ices with tholins. Its surface is one of the reddest among Solar System objects. To within estimated uncertainties, Sedna is tied with Ceres as the largest planetoid not known to have a moon.

For nearly all of its orbit, Sedna is even farther from the Sun than at present: its orbit is one of the largest in the Solar System other than those of long-period comets, with its aphelion estimated at 937 AU.[5] 937 AU is 31 times Neptune's distance, 1.5% of a light-year (or 5.5 light-days) and well beyond the closest portion of the heliopause, which defines the boundary of interstellar space. (Eris and Gonggong are currently further from the Sun, at 96.0 AU and 88.3 AU, respectively than Sedna at 84.7 AU (as of 2019), because Sedna is near perihelion.)

Sedna has an exceptionally elongated orbit, and takes approximately 11,400 years to return to its closest approach to the Sun at a distant 76 AU. The Minor Planet Center currently categorized Sedna as part of the scattered disc, a group of objects sent into highly elongated orbits by the gravitational influence of Neptune. This classification has been contested because its perihelion is too large for it to have been scattered by any of the known planets, leading some astronomers to informally refer to it as the first known member of the inner Oort cloud. It is also the prototype of a new orbital class of object, the sednoids.

Astronomer Michael E. Brown, co-discoverer of Sedna and numerous other possible dwarf planets, thinks that it is the most scientifically important trans-Neptunian object found to date, because understanding its unusual orbit is likely to yield valuable information about the origin and early evolution of the Solar System. It may have been tugged into its current orbit by a passing star, or perhaps by several stars within the Sun's birth cluster, or it may even have been captured from the planetary system of another star. There is also speculation that the clustering of the orbits of Sedna and similar objects may be evidence for a planet beyond the orbit of Neptune.

90482 Orcus

Orcus (90482 Orcus, provisional designation 2004 DW) is a trans-Neptunian dwarf planet with a large moon, Vanth. It has a diameter of 910 km (570 mi). The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.

Orcus is a plutino, a trans-Neptunian object that is locked in a 2:3 resonance with the ice giant Neptune, making two revolutions around the Sun to every three of Neptune's.This is much like Pluto, except that the phase of Orcus's orbit is opposite to Pluto's: Orcus is at aphelion (most recently in 2019) around when Pluto is at perihelion (most recently in 1989) and vice versa. Orcus is the largest known plutino after Pluto itself. The perihelion of Orcus's orbit is around 120° from that of Pluto, while the eccentricities and inclinations are similar. Because of these similarities and contrasts, along with its large moon Vanth that recalls Pluto's large moon Charon, Orcus has been regarded as the anti-Pluto. This was a major consideration in selecting its name, as the deity Orcus was the Roman/Etruscan equivalent of the Roman/Greek Pluto.

Makemake

Makemake (minor-planet designation 136472 Makemake) is a dwarf planet and – depending on how they are defined – the second-largest Kuiper belt object in the classical population, with a diameter approximately 60% that of Pluto. It has one known satellite. Its extremely low average temperature, about 40 K (−230 °C), means its surface is covered with methane, ethane, and possibly nitrogen ices.

Makemake was discovered on March 31, 2005 by a team led by Michael E. Brown, and announced on July 29, 2005. It was initially known as 2005 FY9 and later given the minor-planet number 136472. In July 2008, it was named after Makemake, a creator god in the Rapa Nui mythology of Easter Island, under the expectation by the International Astronomical Union (IAU) that it would prove to be a dwarf planet.

Haumea

Haumea (minor-planet designation 136108 Haumea) is a dwarf planet located beyond Neptune's orbit. It was discovered in 2004 by a team headed by Mike Brown of Caltech at the Palomar Observatory in the United States and disputably also in 2005 by a team headed by José Luis Ortiz Moreno at the Sierra Nevada Observatory in Spain, though the latter claim has been contested. On September 17, 2008, it was named after Haumea, the Hawaiian goddess of childbirth, under the expectation by the International Astronomical Union (IAU) that it would prove to be a dwarf planet. Nominal estimates make it the third-largest known trans-Neptunian object, after Eris and Pluto, though the uncertainty in best-fit modeling slightly overlaps with the larger size estimates for Makemake.

Haumea's mass is about one-third that of Pluto, and 1/1400 that of Earth. Although its shape has not been directly observed, calculations from its light curve are consistent with it being a Jacobi ellipsoid (the shape it would be if it were a dwarf planet), with its major axis twice as long as its minor. In October 2017, astronomers announced the discovery of a ring system around Haumea, representing the first ring system discovered for a trans-Neptunian object. Haumea's gravity was until recently thought to be sufficient for it to have relaxed into hydrostatic equilibrium, though that is now unclear. Haumea's elongated shape together with its rapid rotation, rings, and high albedo (from a surface of crystalline water ice), are thought to be the consequences of a giant collision, which left Haumea the largest member of a collisional family that includes several large trans-Neptunian objects and Haumea's two known moons, Hiʻiaka and Namaka.

Pluto

Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It was the first object discovered in the Kuiper belt and remains the largest known body in that area. After Pluto was discovered in 1930, it was declared the ninth planet from the Sun. However, beginning in the 1990s, its status as a planet was questioned following the discovery of several objects of similar size in the Kuiper belt and the scattered disc, including the dwarf planet Eris, leading the International Astronomical Union (IAU) in 2006 to define the term planet formally—excluding Pluto and reclassifying it as a dwarf planet.

Pluto is the ninth-largest and tenth-most-massive known object directly orbiting the Sun. It is the largest known trans-Neptunian object by volume but is less massive than Eris. Like other Kuiper belt objects, Pluto is primarily made of ice and rock and is relatively small—one-sixth the mass of the Moon and one-third its volume. It has a moderately eccentric and inclined orbit, ranging from 30 to 49 astronomical units (4.5 to 7.3 billion kilometers; 2.8 to 4.6 billion miles) from the Sun. Therefore, Pluto periodically comes closer to the Sun than Neptune. Still, a stable orbital resonance with Neptune prevents them from colliding. As a result, light from the Sun takes 5.5 hours to reach Pluto at its average distance (39.5 AU [5.91 billion km; 3.67 billion mi]).

Pluto has five known moons: Charon (the largest, whose diameter is just over half that of Pluto), Styx, Nix, Kerberos, and Hydra. Pluto and Charon are sometimes considered a binary system because the barycenter of their orbits does not lie within either body.

The New Horizons spacecraft performed a flyby of Pluto on July 14, 2015, becoming the first and, to date, only spacecraft to do so. During its brief flyby, New Horizons made detailed measurements and observations of Pluto and its moons. In September 2016, astronomers announced that the reddish-brown cap of the north pole of Charon is composed of tholins, organic macromolecules that may be ingredients for the emergence of life, and produced from methane, nitrogen, and other gases released from the atmosphere of Pluto and transferred 19,000 km (12,000 mi) to the orbiting moon.

Ceres

Ceres (/ˈsɪəriːz/; minor-planet designation: 1 Ceres) is a dwarf planet in the asteroid belt between the orbits of Mars and Jupiter. Ceres was the first asteroid discovered, on 1 January 1801 by Giuseppe Piazzi at Palermo Astronomical Observatory in Sicily. Originally considered a planet, it was reclassified as an asteroid in the 1850s after the discovery of dozens of other objects in similar orbits. In 2006, it was reclassified again as a dwarf planet – the only one always inside Neptune's orbit – because, at 940 km (580 mi) in diameter, it is the only asteroid large enough for its gravity to make it plastic and to maintain it as a spheroid.

Ceres's small size means that even at its brightest it is too dim to be seen by the naked eye, except under extremely dark skies. Its apparent magnitude ranges from 6.7 to 9.3, peaking at opposition (when it is closest to Earth) once every 15- to 16-month synodic period. Its surface features are barely visible even with the most powerful telescopes, and little was known of them until the robotic NASA spacecraft Dawn approached Ceres for its orbital mission in 2015.

Dawn found Ceres's surface to be a mixture of water ice and hydrated minerals such as carbonates and clay. Gravity data suggest Ceres to be partially differentiated into a muddy (ice-rock) mantle/core and a less-dense but stronger crust that is at most 30% ice by volume. Ceres's small size means that any internal ocean of liquid water it may once have possessed has likely frozen by now. It is not completely frozen, however: brines still flow through the outer mantle and reach the surface, allowing cryovolcanoes such as Ahuna Mons to form at the rate of about one every 50 million years. This makes Ceres the closest known cryovolcanic body to the Sun, and the brines provide a potential habitat for microbial life.

In January 2014, emissions of water vapor were detected around Ceres, creating a tenuous, transient atmosphere known as an exosphere. This was unexpected because asteroids typically do not emit vapor, a hallmark of comets.